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U, ABSTRACT

Solutions of a forced pendulum equation of one
degree-of-freedom with nonlinear damping terms have been
studied for chaotic and dissipative behavior. This equation
can simulate phenomena in which vortex shedding from
oscillating and rotating bodies is involved. The characteristic
properties of this equation, that is, its singular points,
attractors, separatrices, etc. are investigated and related to
their physical meaning. A novel attractor is found that
represents simultaneously autorotation and self-sustained
oscillation. Chaotic behavior is studied with Poincard maps
and power spectra. Strange attractors exist which are
insensitive to various pendulum coefficients.
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BACKGROUND

The relative simplicity of the pendulum equation, its easy integration on
today's computers, and its physical lucidity have made the study of this
equation often a paradigm for investigating nonlinear processes in which
chaotic and dissipative behavior is involved. Books by Thompson and
Stewart, 1 Moon, 2 and Schuster 3 may be mentioned. In addition to this more
educational aspect, the pendulum equation has been proven a reasonably
accurate model for a number of complicated physical phenomena.

Of Navy interest are pendulum-type equations that m~del the rolling
motion of ships. ' This motion can exhibit chaotic behavior. 4"-

Another example of Navy interest is the usefulness of an extended
pendulum equation to describe rotating and oscillating objects in a fluid, a
problem whose solution other% .se would require the numerical integration of a
set of nonlinear partial differential equations. This case will be studied in this
report in more detail. . '.- 4. A .

The involvement of t4, simple pend m equation 1) -

x + D sin x = 0 (7

in the movement of bodies in fluid flows can be shown directly in the case of
an infinitely long plate rotating or oscillating in a potential flow with the axis
free to move. 7 The displacement angle is x and the angular velocity is i, with
the dot indicating differentiation with respect to time. D is the square root of
the natural frequency for small oscillations with the moment of inertia

.... ... .. ..... ... . . . . -- - . . l l ~ m I U ummnnm n ul 1



normalized to unity. Two initial conditions must be prescribed to make the
solution unique. For a viscous fluid the senior author related in two papersg' 9

vortex shedding from oscillating and rotating bodies with the axis fixed in a
parallel flow to a nonlinear model of one degree-of-freedom. It was argued
that, at least qualitatively, a fifth-order polynomial for the damping term in the
pendulum equation is necessary to simulate self-sustained (or self-excited)
oscillation and rotation with a stable rest state

3+Ai +Bji 3 +Ci 5 +D sinx = 0, (2)

where the coefficients A through D are constants, and at least one of the
coefficients A, B, and C must be negative. For a bounded solution, the
highest damping term is assumed to be positive, that is, C > 0; and B > 0
only if C = 0. If the lowest damping term is positive, the state at rest is
stable; if it is negative, the state at rest is unstable. Thus, a qualitative
difference between a third-order and a fifth-order polynomial for damping
occurs only for the combination A > 0, B < 0, C > 0 for the fifth-order
and A < 0, B > 0 for the third-order damping.

Various simplified forms of Eq. (2) have been studied in the literature.
The case closest to Eq. (2) with C = 0 and with an additional constant K0
(which will be introduced below) is known as the Froude pendulum. 2,10

The need for a fifth-order damping polynomial can be inferred from the
fifth-order curve for the torque T of a rotating body in a constant parallel
stream as a function of the angular velocity fi= i (in the case of oscillation or
time-dependent rotation, the average torque T as a function of frequency),
which was named the Riabouchinsky curve8 (Fig. 1). This fundamental curve
was verified experimentally and numerically for the Lanchester propeller, the
autorotating plate, galloping, and vortex-induced vibration, and is also
applicable to other vortex-related phenomena like the autorotation-in-roll of
aircraft and the rolling motion of ships.8

The meaning of the curve in Fig. la may be explained with reference to
a rotating propeller in a parallel flow in the following way: A motor drives a
propeller with constant angular velocity f0. The torque T necessary to drive
the propeller is measured as a function of fl. When 02 is either quite small or
quite large, a (positive) torque is necessary. Between these values an fl-range
exists in which the torque is negative and has a braking effect. This negative
value indicates a negative damping of the flow which is due to vortex shedding.
If the torque of the motor is removed, the propeller increases its angular
velocity until T = 0. This is the state of autorotation (point A in Fig. 1). The
other point at which T = 0 is unstable (point I in Fig. 1). If point I coincides
with the origin, a third-order curve suffices to demonstrate the existence of A
(Fig. 1b). For self-sustained oscillation, average values of T must be used,
and i? must be replaced by the frequency of the oscillation. It is also possible
that Fig. 1 represents part oscillation and part rotation as will be demonstrated
in the section on chaotic behavior.

For forced oscillation and rotation, Eq. (2) must be augmented to

Y+Ai +B 3 +C*5 +D sinx=Ko+Ksin((w*t+) , (3)
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with K, w*, and & the amplitude, frequency, and phase angle of the forcing
term, respectively. K 0 is a constant forcing term (that is, a constant torque).

Equation (3) was solved by a Runge-Kutta method with a computer
program which was available as DEPAC from Sandia Laboratories. This
program provided also an accuracy check that consists of the sum of relative
and absolute tolerances. It is recognized that solutions of a finite-difference
scheme deviate ultimately from the solutions of the original differential
equations. For non-chaotic motions sufficient accuracy was obtained to ensure
the validity of the curves presented as solutions of the differential equations.
For chaotic motions the trajectories become unpredictable for long integration
times. However, the strength of the attractors appears to overcome this
deficiency, and strange attractors are found which are insensitive to the
accuracy of the Runge-Kutta method for variations in the tolerance of an order
of magnitude.

It is the purpose of this report to present the characteristic parameters
and singular points in phase space for the two modes of oscillation and
rotation and to demonstrate the chaotic behavior for various parameters with
Poincar6 maps and power spectra.

NON-CHAOTIC BEHAVIOR

Equations (1) and (2) do not contain a forcing term and therefore
chaotic b-havior cannot be expected.1

The well-known characteristics of the simple pendulum equation (1) and
the local linear behavior of the system with a damping term may serve as
guides for the systematic exploration of the properties of the extended
pendulum equation (2).

In the non-dissipative system, Eq. (1), the two modes of oscillation and
rotation occupy in phase space (i, x) areas that are divided by a curve called a
separatrix (Fig. 2). At x0 = 0 with D = 1, rotation occurs for Io I > 2 and
oscillation for Io I < 2.

The types of singular point for the linearized version of Eq. (2) can be
identified easily and are discussed in elementary textbooks. In Fig. 2 two types
are observed: The points (xo = 0, 27r, etc., .io 0) are center points, and the
points (xo = r, 37r, etc., io = 0) are saddle points. Fixed points in Figs. 3
and 4 are spiral points.

In a dissipating system damping terms are responsible for a transient
period, and trajectories lead asymptotically to an attractor, either to a fixed
point or to a limit cycle. The limit cycle for the oscillating mode is a closed
curve, whereas the limit cycle for rotation is a sinusoidal curve, called in Ref.
9 an open limit cycle. Now the separatrix does not necessarily divide the areas
of the oscillating and rotating modes but divides two basins of attraction in
which trajectories lead to different attractors.

There are two types of separatrices in the dissipative system described
by Eq. (2) with all constants nonzero and A > 0. The first type is a sinusoidal

3



curve indicating physically the autorotation shown in Fig. 3 with A = 0.2,
B = - 0.12. C = 0.01, D = 0.2. However, this state is unstable.
Trajectories (dotted lines) with an initial velocity i I larger than the velocity
given by the separatrix lead over a transient period to the open limit cycle
(which is autorotation). Trajectories in the other basin of attraction end in a
fixed point after a transient period of rotation and oscillation. Among the
latter trajectories are those emanating from or ending at a saddle point. Such
a trajectory is called by Thompson and Stewart' an outstructure (dashed lines).
The outstructures divide the region inside the separatrices into two basins of
attraction for positive and negative initial rotations. These two regions wrap
around the fixed points as common attractors in ever diminishing spiral bands.

A separatrix, then, divides regions with two physically different kinds of
attractors, that is, self-sustained oscillation and autorotation. Outstructures, on
the other hand, although basin boundaries too, separate regions with a
common attractor.

The second type of separatrix is an oval curve, indicating physically
unstable oscillation. In the example shown in Fig. 4 the constants are the
same as in Fig. 3 except that here D = 2. Trajectories outside the oval are
attracted to the open limit cycle of autorotation, whereas the trajectories inside
the oval end in a fixed point. Now the outstructures lie outside the separatrix.
The regions of attraction for positive and negative initial rotations wrap around
the separatrix in ever decreasing spiral bands (red and green bands,
respectively, in Fig. 4).

These two types of separatrices, displayed in Figs. 3 and 4 for D = 0.2
and 2, respectively, merge in a limiting situation D = D,, with two
approximations D = 0.80 and D = 0.81 shown in Fig. 5. The separatrix here
re ,  ,zents unstabl, states of both oscillation and rotation and is reminiscent of
the separatrix of the conservative system in Fig. 2.

The separatrices correspond in Fig. la to point I, while the limit cycles
correspond to point A and the fixed point to the origin of the graph.

For the case of an unstable state at rest, that is, A < 0, C can be put to
zero without loss of generality for a qualitative discussion (Fig. ib). Then, a
closed or open limit cycle exists depending on the asymptotic state of
oscillation or rotation (Figs. 6 and 7) without a separatrix. However,
outstructures do exist with a saddle point. From here, one branch goes into
the oval limit cycle (Fig. 6) and the other branch, coming from infinity, ends in
the saddle point. The spiral point is now a repeUor. Fig. 7 shows the same
situation for an open limit cycle. The basins of attraction, divided by
outstructures, are marked in red and green.

Here again, there is a limiting situation between the two examples, Figs.
6 and 7, as displayed in Fig. 8, which appears to contain a novel feature:
Closed and open limit cycles collapse to one single braid-type curve! This
attractor represents both autorotation and self-sustained oscillation, and the
choice between them depends on the approach to this unusual attractor:
Trajectories inside the oval are drawn to the attractor in the oscillatory mode,
trajectories outside in the rotatory mode.

4



The essential qualitative difference between the third-order and the
fifth-order polynomial damping terms lies in the sign of A. The change from
positive to negative A represents a typical Hopf bifurcation2 , that is, the
transition from a fixed-point attractor to a limit-cycle attractor. It may be
pointed out that the limit cycle in this Hopf bifurcation can be both closed and
open.

The presence of the constant forcing term K0 (which represents a
constant torque) does not cause chaotic motion. Increasing the value of Ko
diminishes and finally eliminates the oscillating mode, and the rotating mode
prevails. Solutions of Eq. (3), with K sin (w*t + ce) present, can display chaos.
They will be discussed for some typical parameter values in the next section.

CHAOTIC BEHAVIOR

Interaction between self-excited and forced periodic motion, described
by Eq. (3), can exhibit chaotic behavior. The concept of chaos is complex and
difficult to define; to quote Hao: 11 "There is no generally accepted definition
of chaos." Here it may be loosely defined according to Moon2 as a
"deterministic system whose time history has a sensitive dependence on initial
conditions" and by certain criteria met in a Poincare map and in a power
spectrum.

Studies of special cases of Eq. (3) with regard to chaotic behavior
abound in the literature.2 A few examples are the papers by Pezeshki and
Dowell12 on the Duffing equation, by Gwinn and Westervelt1 3 on
intermittency, and by Grebogi et al.14 on smooth and fractal basin boundaries.

In this report the patterns of strange attractors are studied for selected
values of the coefficients in Eq. (3). The following coefficients were kept
unchanged for all cases studied: Ko = 0, w* = 1, ce = 0 with the initial
conditions x 0 = ic0= 0.

Chaotic behavior in pure oscillation was observed for
A -0.2, B 0.01, C= 0, D = 2. and K = 10, displayed in Fig. 9. This
case may be compared with that of Fig. 7 for K = 0, in which the fixed point
is a repellor and the attractor an open limit cycle, that is, autorotation. The
force term prevents rotation now and generates a strange attractor in the
oscillatory mode seen in Fig. 10.

Figure 10 shows a Poincar6 map with typical folding characteristics
known from similar situations. 2 The number of points, plotted after each
At = ir/4, is 500.

The corresponding power spectrum is shown in Fig. 11. If the Fourier
transform i(w) of the function x(t) is defined by

I

x(w) = lim fx(t') e "dt '  (4)
t-+0o 0

5



the power spectrum is

P(W)= Ii)1 2  (5)

In Fig. 11 the function 20 logjOP in units of decibles is plotted against the
frequency w in radians per second. The graph reveals chaotic behavior
through its wiggling curve and the existence of subharmonics.

In the second example, the value of K was lowered to K = 2, and B
was chosen to be 0.03, 0.08, and 0.12. The motions for B = 0.03 and 0.12
(Figs. 12a and 13a) are a mixture of oscillation and rotation and exhibit typical
strange-attractor patterns known from the literature, with a more concentrated
structure for the larger damping coefficient. Relaxing the accuracy of the
Runge-Kutta scheme by an order of magnitude does not change the strange-
attractor pattern. Between B = 0.03 and 0.12, for B = 0.08, the motion is
non-chaotic (Fig. 14). In this picture the phase plane displays, after a transient
period of irregular motion, a periodic one consisting of a combination of
rotation and oscillation.

It is interesting that for moderate forcing amplitudes (1 < K < 5) the
strange attractor does not distinguish between the third-order (Figs. 12a, 13a)
and the fifth-order (Figs. 12b, 13b, 18a, 19a) cases. The Poincare maps are all
qualitatively the same. The only difference is the tightness of the point swaths
which (as is well-known) is a direct function of the total damping in the
system. This result was not anticipated since these two modes are qualitatively
different in their autonomous versions. The fifth-order case always has an
autorotation attractor as well as a fixed point (Figs. 3 and 4), while the motion
in the third-order case leads either to autorotation (Fig. 7) or to oscillation
(Fig. 6) but never decays to a fixed point. The reason for the merging of these
two cases in the chaotic regime should be explored in later studies.

Power spectra for the cases of Figs. 12a and 13a are displayed in Fig.
15. Again, the spectra in Fig. 15 are "continuous" with a spike at w = 1 and
subharmonic values.

The influence of K was studied in a more systematic manner by
increasing the values of K from 0.1 to 10 for the special force-free case shown
in Fig. 4. The coefficients are A = 0.2, B = - 0.12, C = 0.01, D = 2.

The phase plane for K = 0.1 in Fig. 16 is very similar to that for K = 0
in Fig. 4. The oval separatrix and open limit cycle, however, are not lines that
are independent of the initial conditions but "sheets," with time as an
additional coordinate. The solid and dotted lines in Fig. 16 are thus lines
which do not necessarily coincide for different initial conditions. The
attractors are either quasi-periodic autorotation or a fixed point.

For K = 1 the situation changes. After a transient time of chaos,
shown on the Poincari map in Fig. 17a as dots, the motion becomes periodic,
indicated in the phase plane as a closed curve. This curve is superposed on
Fig. 17a, and the corresponding Poincar6 data for the closed curve are marked
by a box and an arrow. The corresponding power spectrum is displayed in
Fig. 17b.

6



Poincard maps and power spectra for the cases K = 1.5 and 2 are
shown in Figs. 18 and 19. They clearly reveal chaotic behavior.

Finally, with further increase of K to 5, the oscillatory mode dominates,
and the motion becomes periodic again (Fig. 20).

By changing D from 2 to 0.2 one observes, although not shown in this
report, for K = 0.1 a situation similar to that in Fig. 3 with a sinusoidal
separatrix and attractors of either closed-limit cycle or fixed-point type. The
motion exhibits autorotation for K = 2 and self-sustained oscillation for
K = 5 through 10.

It is planned to obtain more physical insight into the characteristics of
the strange attractors and into the frequency-coupling behavior of Eq. (3) by
meanis of higher-order spectral analysis1 in future studies.
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a b

Fig. 1. Riabouchinsky curves of (a) the fifth-order type and (b) the third-order
type.
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x
Fig. 2. Phase plane for the simple pendulum equation (1) with D = 1.
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Fig. 13. Poincar6 maps for the coefficients (a) A= -0. 2, B= 0. 12, C= 0,
D = K = 2 and for (b) A = 0.2, B = -0.02, C = 0.01, D = K =2.
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Fig. 15. Power spectra for the two cases of Figs. 12a and 13a.
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Fig. 17. Poincar6 map (a) and power spectrum (b) with the same coefficients
as in Fig. 16 but with K =1.
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Fig. 18. Poincar6 map (a) and power spectrum (b) with the same coefficients
as in Fig. 16 but with K = 1.5.
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as in Fig. 16 but with K = 2.
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